
Comparisons of Test t Case Prioritization
Algorithm with Random Prioritization

Thillaikarasi Muthusamy1, Dr. Seetharaman.K2

1(Assistant Professor) Department of computer science and Engineering

2(Associate Professor) Department of computer science and Engineering,
Faculty of Engineering and technology

Annamalai University, Annamalai Nagar, Tamilnadu, India-608002

Abstract—Test case prioritization organizes test cases in a
way to accomplish some performance goals efficiently. Rate of
error detection is one most important performance objectives.
The test cases must be given in an order that calls down the
opportunity of fault detection in the early life cycle of testing.
Test case prioritization techniques have shown to be good in
improving regression testing activities. In this report, we have
suggested an algorithm which prioritizes the system test cases
based on the six factors: customer priority, changes in
requirement, implementation complexity, requirement
traceability, execution time and fault impact of requirement.
We conducted a controlled experiment on two industrial data
sets to compare the suggested value based test case
prioritization algorithm with random prioritization for early
rate of fault detection. The average share of fault detection
metrics have been employed to evaluate the efficiency of
proposed and random priority and it proves that the proposed
value based algorithm is more effective than random
prioritization to generate sequence of trial examples for early
rate of fracture detection.

Index Terms—Test case prioritization (TCP), test case
factors, Average percentage of error detection

I. INTRODUCTION
Software testing requires resources and consumes 30- 50%
of the total cost of development. Testing is often executed
in time to market pressure and is supposed to test whole
software in a systematic fashion to achieve quality as a
good deal as possible. Testing also includes many other
prospects such as delivering error free versions and
checking, thorough software iteration in available time and
other resources. In this exercise it may not be possible for
testers to offer quality product free of bugs to customers so
it ultimately promotes the possibility of possible risks in
software, while on the other hand time slippage occurs for
delivering the satisfactory quality assessment of software
[1]. Testing has been traditionally performed in value
neutral approach in which all software components are
given same testing resources to prove but this eventually
does not satisfy the goal customer as approximate 36% of
software uses are only often used [2]. Consequently it is
meaningless to test the whole software in this way. One
character of testing is a regression testing in which software
is tried out after making some modifications to it.
Regression testing is thought to be really expensive due to
repeated execution

It records detailed execution traces of existing test cases.
Regression testing involves execution of a great number of
test cases and is time consuming [3]. It is impractical to
repeatedly test the software by executing a complete lot of
test cases under resource constraints. Thus, it is desirable to
select partial test cases to try the software for fault
identification at an early point. Thither are many selection
techniques for this such as test all our random selection
techniques. Only the choice of test cases, according to
some pre-determined standards for early rate of fault
detection might be somehow risky technique as there could
be many other unselected test cases, which can result in
more fat
Identification. When very high quality software is desired,
it might not be wise to discard test cases as in test
minimization. Whereas, we can prioritize the test cases by
following some criteria such as code coverage, execution
time or early fault detection to execute the test cases in that
parliamentary law to achieve the particular destination. We
can claim benefit of test case prioritization if we conflate it
with the value based access. The concept of value has been
presented by Barry Boehm. In the suggested attack, more
value is awarded to software functions; those are more
critical or important to our stakeholders. As the target of
the software or any business is to increase the yield on
investment (ROI) so by introducing value in testing, testers
can focus on more concerned modules of software to
satisfy stakeholders. These modules are named with the
assistance of stakeholders. Stakeholders give some value to
modules and according to some predefined criteria; these
modules, assign some value and tried accordingly. This
concept is known as value based test case prioritization [2].
Thither are many algorithms used for test case prioritization
such as greedy, additional greedy, hill climbing etc.
Artificial intelligence is very vast area and many of its
algorithms are employed in software testing such as genetic
algorithm or particle swarm optimization. There is demand
to optimize the testing resources in a manner to provide
quality software. In this paper, we present a test case
prioritization algorithm in which test cases are prioritized
while considering the worth of value in the testing process.
Our goal of value based test prioritization is for early error
detection. An experiment has been done to compare
effectiveness of the proposed and existing technique. The
results mean that the proposed AI value based test

Thillaikarasi Muthusamy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6814-6818

www.ijcsit.com 6814

prioritization may be a good resolution for a prioritization
problem than random technique. The remainder of the
paper is formed as follows: Section 2 provides briefly the
related work. Part 3 introduces the problem analysis of test
case prioritization. Part 4 is about proposed methodology
and experimentation. In Section 5 conclusions and future
research are discussed.

II. RELATED WORK
There has been using different criterion for test case
prioritization in literature such as code coverage [4, 5, 6, 7]
or non-code coverage techniques [8, 9] etc. Li et al. [4] Has
performed an experiment to compare three greedy
algorithms and two meta-heuristics algorithms for test case
prioritization under code coverage criteria on six programs.
Results indicated that it is the size of the search space that
involves the complexity of test case prioritization; not the
size of the trial suite itself. Global search techniques and
additional greedy algorithm performed better than local
search techniques and greedy algorithms respectively. In
another paper seven fault versions of C programs are
utilized in an experiment to compare different statement
level techniques by manually seeding faults in programs.
Solutions indicated that optimal prioritization greatly
improved rate of error detection [15]. Rothermel et al. Has
also used code coverage measures for an experiment on
seven fault versions of programs written in C language for
early fault detection The results specify that test case
prioritization can considerably improve the rate of fault
detection of test suites [5]. Artificial intelligence techniques
are becoming popular to function for test prioritization.
Walcott et al. has used a genetic algorithm for test case
reordering for early fault detection criteria by using
coverage information [6]. A controlled study experiment
along with two case studies has been transmitted to assess
effectiveness of parameterized genetic algorithms.
Outcomes were compared with other heuristics, including
initial, reverse of initial test suit ordering, random and fault
aware prioritization. It was needed for each test case to be
autonomous from other test cases to maximize the fault
detection ability. Results reveal the genetic algorithm as
more promising than any other technique under time
constraint environment. Fayoumi et al. [7] has used ant
colony optimization (ACO) and rough set theory concepts
to obtain a best quality test case of unit test for object
oriented source code. This approach used method call,
giving arguments and command flow dependency graphs.
A hybrid novel framework was proposed by inspiring the
natural ant. Circulation and exploring the best test case
value had been done through Ant colony pheromone matrix
Rough set is used as a stopping criteria rule in the proposed
model. Bayesian network (BN) approach has also been
applied to prioritize the test cases [8]. An empirical study
on five Java objects indicates the strength of feedback
mechanism of BN approach in terms of early fault
detection. Particle swarm optimization (PSO) is an
optimization technique of swarm intelligence paradigm. In
[9] author has used test case coverage and used PSO to
assess the best possible placement of test events in search
swarm in modified software units. Existing test case

priorities and fitness of test events were used as parameters
for new priorities of test examples. PSO was found to be
more efficient in term of time and cost than greedy
algorithm. Test case prioritization has also been applied to
dilute the quality assurance cost as well as for minimizing
the fault detection effort. The problem with reducing fault
detection effort was that it may cause the information loss,
as a resolution of which debugging cost gets increase. And
then it was a great challenge to reduce the quality assurance
cost which includes both the testing and debugging cost
while minimizing the loss of diagnostic fault information.
The Author has proposed the on-line greedy diagnostic
prioritization approach that uses the observed test result to
determine the following test case. In this approach high
utility tests were those tests which maximize the reduction
of diagnostic cost at each measure on average [10].

III. PROBLEM DEFINITION
Faster detection of faults and early satisfaction of
stakeholders are two objectives which can be fulfilled by a
value based testing. Traditionally random prioritization is
being employed to satisfy these objectives, but it is not
giving the desired results all the times. Hence there is a
need of better technique for overcoming this issue. For this
role we are proposing value based TCP algorithm to
reorder the test cases to bring out more optimal solutions.
Our proposed TCP algorithm considers the stakeholder’s
value against requirement and test cases and generate
ordering that detects more faults at earlier levels.

IV. PROPOSED WORK
We have used value based approach at two levels 1) on
requirement level 2) and on testing level. On first level
requirement priority is being applied to incorporate test
case value. This requirement priority is provided by the
concerned stakeholders. Stakeholders did ranking of these
requirements from 1- 10 by categorizing those as
catastrophic, medium complexity and less significant.
Requirements having more value were more important to
stakeholders. On the second level development team was
requested to mark the test cases by following the respected
requirements. These test cases were graded according to
some pre-determined components. These two factors are
discussed below. Values of these two grades were
computed to get the internet value. Test cases were
prioritized according to produced results for earlier error
detection. To define the constituents required in our
proposed prioritization algorithm, we believe the following
components from the literature in our proposed algorithm:
(1) customer priority (2) implementation complexity (3)
requirement volatility (4) requirements traceability (5)
execution time and (6) fault impact of requirement. We talk
over these factors here at a lower place. Roughly 36% of
the software functions is only constantly used, while 19%
only used often and while the rest percentage is not applied
at all i.e. 45 % used [2]. Frequent failures are induced by
the flaw that is situated along the course of regular
execution, and greater effort should be constructed to detect
such kind of faults [11, 12]. The perceived customer value
and satisfaction can be increased, by giving priority to

Thillaikarasi Muthusamy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6814-6818

www.ijcsit.com 6815

client demands for development [13,2]. To addressing this
problem, clients were required to place the requirement
from 1 to 10 by considering the importance of the
necessity. Highest customer priority is denoted by 10.
Implementation complexity refers to individual measures of
amount of difficulty perceived by the developers of the
requirement by the development team. Amland carried out
an investigation to ascertain that the functions with greater
McCabe complexity are those with a high number of faults
[14]. From the total system 20 % modules of the
arrangement resulted in 80% of the faults [15, 16, 17].
Roughly 50% of the total faults discovered in a project
comprise of those erroneous beliefs that are brought out in
the requirement phase [24]. Rigorous defects that deliver to
the customer costs hundred times greater averagely to
resolve as compared to resolving the same problem in the
requirements time [18]. Requirements volatility is
measured as the number of times the development cycle of
a requirement has been altered with respect to when the
requirement was first introduced. It is essentially a
judgment of the requirements change with respect to its
commencement date. It also ranges from 1 to 10[19, 17].
The relationship between various artifacts in a software
development process such as requirements, design and test
cases is known as traceability [23]. Literature indicates that
Software quality can be ameliorated by bringing into
account the requirements traceability [21]. In literature
many authors have viewed the implementation time of test
case as cost of test case [19, 16, 22, 9]. Test case costs
should bear a heavy impact on the test case prioritization.
In conditions of test case cost, it can be connected to the
resources, such as execution time of the test case, hardware
costs or even engineers’ salaries. In our case test case cost
is the performance time of test example. Fault proneness
(FP) of essentials is the identification of the requirements
that bear the most failures in the former variant of the
development team [16]. As proved from literature the test
efficiency can be improved by focusing on features that
hold the greatest number of faults [20] [19]. A.
Experimental Setup We have performed a controlled
experiment on two industrial projects to measure the
effectiveness of our proposed prioritization algorithm. We
have been providing the documentation of these tasks. We
picked use cases and test cases and asked the customers to
rate these use cases. A value based requirement
prioritization tool was employed to rank these requirements
[13]. The special creature was designed to place the
requirement at stakeholder and expert level. Project
managers did the job of the expert role in these tasks.
Microsoft excel 2009 was used as requirement-test case
traceability tool. MATLAB 9.0 was used to implement this
algorithm. We have used random number generation to
produce 20 different orders of test cases. Test events are
performed in these societies. No of test cases performed to
determine the faults are worked out. For each project mean
value of results are figured. The results of fault detection in
both the cases are compared to strengthen the potency of
the proposed test case prioritization. The following table
describes details of the selected tasks.

There were five stakeholders involved in this operation.
Their part in the process is specified below:
The customer was responsible to provide system
requirements, requirement’s priority and field failure. The
developers were asked to place the requirement according
to its development complexity level. Demand Analyst
/Business analyst records the requirements, their priorities
and any changes to the essentials. Maintenance Engineer
resolves the field failures defects and links the failure back
to the requirements impacted. The tester provides test cases
for each requirement, map the requirement to its test case,
and executes the test examples.

B. Proposed Algorithm
Following is the proposed algorithm of value based PSO.
1. Get test case factor values for all test cases.
2. Compare values factor wise.
3. Give highest score to maximum and lowest score to
minimum value.
4. Assign scores to remaining values by counting the
number of terms to which the particular value is greater.
5. Repeat 2 to 4 for all test cases against every factor value.
6. Add these factor values for all test cases.
7. If same value is obtained for more than one test case then
decision is taken by comparing
 Requirement value of these test events.
8. If the use case rating also becomes equal or more than
one test instance of same value belong to
 The same use case, and so the test case will be carried out
on a first come first serve basis.
In our study we have predicted the effectiveness of our
proposed algorithm for early defect detection by using
APFD metric. APFD metric is first developed by Elbaum et
al. [4, 5]. This metric has been hired to measure the average
rate of fault detection per percentage of test suite
implementation. The APFD is calculated by taking the
weighted average of the
The number of faults detected during the run of the test
runs. APFD can be calculated using a note:
Let T be the test suite under evaluation, m be the number of
faults contained in the program under test P and n is the
total number of test cases while TFi denotes the location of
the first test in T that exposes fault myself.
APFD= 1-TF1+TF2+….. + TFM /NM +1/2N.... (1)

C. Experimental Results
Our algorithm is based on analysis of the percentage of test
cases performed to find the faults and on APFD metric’s
results. Abiding by the percentage of executing test cases in

Thillaikarasi Muthusamy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6814-6818

www.ijcsit.com 6816

earlier fault detection is important as sometimes regression
testing ends without executing all test instances. Outcomes
demonstrate that our algorithms can also achieve better
execution in this event. For instance, in the first project if
only 75% test cases could be melt down due to resource
constraint, random strategy could find more or less 66%
faults; while our proposed algorithm detects about 88%
faults. In a second project if we consume 30% test cases to
accomplish; then random strategy could find more or less
27% faults; while our proposed algorithm detects about
40% faults. This shows clear evidence that our proposed
algorithm is a lot better in earlier fault detection than
random technique. The graphical representation of these
outcomes is presented at a lower place. We had also
validated our results with the aid of standard APFD metric.
We can discover the improved fault detection rate in earlier
testing stage through our algorithm which is the proof of
our algorithm; as more efficient and beneficial in earlier
fault detection goal; whereas gradual improvement in
APFD results are obtained by random strategy later in
testing stage.

In the first project our proposed algorithm has detected
78% faults while random ordering produces 55% of faults,
in a second project our proposed algorithm has detected
67% faults while random ordering produces 50% of
mistakes which again demonstrates the import of our
findings.

V. CONCLUSION
The proposed algorithm is novel approach which
introduced various test case prioritization factors in terms
of value of stakeholders. The proposed algorithm works at
two level 1) requirement level and 2) testing level. Six test
case factors were being employed to grade the test cases,
while use cases were prioritized by using the existing value
based application. Value based algorithm was compared
with random prioritization technique on two industrial
projects and it demonstrated the effectiveness of value
based algorithm for early rate of fracture detection. We are
presently working to understand the essence of the
proposed algorithm with evolved techniques. Additionally
the proposed algorithm is examined on a limited
information set. It can be a little creepy validated by taking
large size projects having a huge pool of employment cases
and trial fonts.

REFERENCES
[1] R. Ramler, S. Biffl and P. Grunbacher “Value-Based Management of

Software Testing”, Book Chapter
[2] B. Boehm and L. Huang, "Value-Based Software Engineering: A

Case Study," IEEE Computer, vol. 36, pp. 33-41, Mar 2003
[3] L. Zhang, S. S. Hou, C. Guo, T. Xie and H. Mei “Time Aware Test-

Case Prioritization using Integer Linear Programming”,
ISSTA’09 , Chicago, Illinois, USA, Jul 2009

[4] Z. Li, M. Harman and R. M. Hierons “Search Algorithms for
Regression Test Case Prioritization”,IEEE Trans. on Software
Engineering, vol. 33, no. 4, Apr 2007

[5] G. Rothermel, R. Untch, C. Chu and M. Harrold, "Test Case
Prioritization: An Empirical Study" Int. Conf. on
SoftwareMaintenance, Oxford, UK, pp. 179 - 188, Sep 1999

[6] K. R. Walcott and M. L. Soffa “Time Aware Test Suite
Prioritization”, ISSTA’06, Portland, Maine, USA, Jul 2006

[7] M. Fayoumi, P. Mahanti and S. Banerjee: OptiTest: “Optimizing
Test Case Using Hybrid Intelligence” World Congress on
Engineering 2007

[8] S. Mirarab and L.Tahvildari “An Empirical Study on Bayesian
Network-based Approach for Test Case Prioritization” Int. Conf.
on Software Testing, Verification, and Validation 2008

[9] K. H. S Hla, Y. Choi and J. S. Park “Applying Particle Swarm
Optimization to Prioritizing Test Cases for Embedded Real Time
Software Retesting”, 8th IEEE Int. Conf. on Computer and on
Information Technology Workshops 2008

[10] A. G. Sanchez “Prioritizing Tests for Software Fault Localization”
10th Int. Conf. on Quality Software, 2010

[11] J. C. Munson and S. Elbaum, "Software reliability as a function of
user execution patterns and practice," 32nd Annual Hawaii Int.
Conf. of System Sciences, Maui, HI, pp. 255-285, 1999

[12] J. Musa, “Software Reliability Engineering”. New York, NY:
McGraw-Hill, 1999

Thillaikarasi Muthusamy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6814-6818

www.ijcsit.com 6817

[13] B. Boehm, "Value-Based Software Engineering," ACM Software
Engineering Notes, vol. 28, pp. 1-12, Mar 2003.

[14] S. Amland, "Risk Based Testing and Metrics," 5th Int. Conf.
EuroSTAR ’99, Barcelona, Spain, pp. 1-20, 1999.

[15] R. Krishnamoorthi, S.A. Sahaaya and Arul Mary “Incorporating
varying Requirement Priorities and Costs in Test Case Prioritization
for New and Regression testing”, 2008

[16] X. Zhang, C.Nie, B. Xu and B.Qu “Test Case Prioritization based on
Varying Testing Requirement Priorities and Test Case Costs”, 2007

[17] H. Srikanth, L. Williams and J. Osborne “System Test Case
Prioritization of New and Regression Test Cases”, 2005

[18] F. Shull, V. Basili, B. Boehm, W. Brown, P. Costa, M. Lindvall, D.
Port, I. Rus, R. Tesoriero and M. Zelkowitz, "What We Learned
about Fighting Defects," IEEE Symposium on Software Metrics,
Ottawa, Canada, pp. 249-258, Jun 2002.

[19] R. Krishnamoorthi, S.A. Sahaaya and Arul Mary “Incorporating
varying Requirement Priorities and Costs in Test Case Prioritization
for New and Regression testing”, 2008

[20] T. Ostrand, E. Weyuker and R. Bell, "Where the Bugs Are,"
Proceedings of the ACM SIGSOFT International Symposium on
Software Testing and Analysis, Boston, MA, pp. 86-96, Jul 2004

[21] A. Ahmed, “Software Testing as a Service” Auerbach Publications,
New York: 2009

[22] A. M. Smith and G. M. Kapfhammer “An Empirical Study of
Incorporating Cost into Test Suite Reduction and Prioritization”,
2009

[23] R. Krishnamoorthi and S.A. Mary “Factor oriented requirement
coverage based system test case prioritization of new and regression
test cases”,2009

[24] Standish.Group,"CHAOS." http://www .standishgroup .com /chaos.
htm. Proceedings of the World Congress on Engineering and
Computer Science 2012 Vol I WCECS 2012, October 24-26, 2012,
San Francisco,USA.

Thillaikarasi Muthusamy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6814-6818

www.ijcsit.com 6818

